Unit 6 - Newton's Laws

It's the Problem Of the D_{A}

PROMPT \# 31

Draw a free body diagram for the following scenarios:

1) A field hockey ball SLOWS DOWN due to friction.
2) After a long day at school, a student lies MOTIONLESS on the couch watching TV.
3) A child pulls on a wagon so that it SPEEDS UP from rest. Assume friction is present.
4) A baseball travels THROUGH THE AIR on its way out of the ballpark. Assume no air resistance (friction).

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {f }}$ the $\mathrm{D}_{\text {ay }}$

PROMPT \# 32

oA rightward force of 60 N is applied to a crate of books with mass of 45 kg so that it moves with a constant velocity. Friction is present.

- Draw the free body diagram.
- Calculate the book's weight.
- What is the normal force?
- What is the frictional force?
- What is the net force?

It's the Problem Of the D_{ay}

PROMPT \# 33

A 50 kg crate is being pushed on a horizontal floor at constant velocity. The coefficient of friction between crate and floor is 0.1 .
a) What type of friction exists while the crate is moving?
b) Determine the value of the applied force necessary to keep the crate moving at a constant velocity.

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {f }}$ the D_{A}

PROMPT \# 34

-During a game of golf, a player takes a tee shot at the $14^{\text {th }}$ green, which causes the ball to go from rest to $29 \mathrm{~m} / \mathrm{s}$ (about $65 \mathrm{mi} / \mathrm{hr}$) in 0.75 s . The ball has a mass of 0.11 kg . Assuming that the acceleration is constant, find the average net force exerted on the ball by the golf club.

- For a warm up drill, the soccer coach asks the players to dribble the $1.5-\mathrm{kg}$ ball at constant velocity. The players must apply an 5 N force to the ball. Assume friction is present between the ball and the grass. What is the acceleration of the ball?

It's the Problem Of the $\mathrm{D}_{\text {ay }}$
 PROMPT \# 35

-A car is towing a boat on a trailer. The driver starts from rest and accelerates to a velocity of $+11 \mathrm{~m} / \mathrm{s}$ in a time of 28 s . The combined mass of the boat and trailer is 420 kg . What is the average net force?
oA tow rope is used to pull a $1000-\mathrm{kg}$ car, giving it an acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. If the frictional force is 750 N , what force does the rope exert? Honors: the applied force exists on an angle of 30 degrees off horizontal.

$\mathrm{I}_{\text {t's the }}$ Problem $\mathrm{Of}_{\text {the }} \mathrm{D}_{\mathrm{Ay}}$

PROMPT \# 36

- Answer the following questions:
- T or F - If an object is at rest, then there must be no forces acting upon the object.
- T or F - It would take an unbalanced force to keep an object in motion at a constant velocity.
- T or F - A balance of forces is demonstrated by an object, which is slowing to a stop.
- T or F - An upward moving object must be experiencing an unbalanced upward force.

It's the Problem Of the D_{ay}

Extra 1

-An applied force of 50 N accelerates a $13.0-\mathrm{kg}$ baby stroller at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ along a park trail.

- How large is the frictional force?
- What is the coefficient of friction?
-If the final velocity of the stroller is a constant $6.0 \mathrm{~m} / \mathrm{s}$, what is the stroller's momentum?

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {f }}$ the $\mathrm{D}_{\text {ay }}$

Extra 2

- A rightward force is applied to a book that weighs 250 N so that it moves with a constant velocity. A frictional force of 100 N is present.
- Draw the free body diagram.
- Calculate the book's mass.
- What is the normal force?
- What is the applied force?
- What is the net force?
- What is the value of the acceleration?

It's the Problem Of the D_{ay}

Extra 3

- A $68-\mathrm{kg}$ person is descending in an elevator at a constant velocity of $4.0 \mathrm{~m} / \mathrm{s}$. At some time, " t ," the elevator starts to slow to a stop at a rate of $2.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Answer the following questions for (a) the period of constant velocity and (b) the period of acceleration:
- What is the value of the net force acting on the person in the elevator?
- What does the person feel like (lighter, normal or heavier)? Draw a free body diagrams with all forces labeled.

$\mathrm{I}_{\text {t's }}$ the $\mathrm{Problem} \mathrm{Of}_{\text {f }}$ the $\mathrm{D}_{\text {ay }}$

Extra 4

-Ryder applies a downward force 15 degrees below horizontal to his 0.682 kg cart so that he can walk at a constant velocity. If the cart experiences a frictional force of 5 N , what is the value of his applied force on the cart?

